Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 11: 1125917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950105

RESUMEN

COVID-19 has taken a huge toll on our lives over the last 3 years. Global initiatives put forward by all stakeholders are still in place to combat this pandemic and help us learn lessons for future ones. While the vaccine rollout was not able to curb the spread of the disease for all strains, the research community is still trying to develop effective therapeutics for COVID-19. Although Paxlovid and remdesivir have been approved by the FDA against COVID-19, they are not free of side effects. Therefore, the search for a therapeutic solution with high efficacy continues in the research community. To support this effort, in this latest version (v3) of COVID-19Base, we have summarized the biomedical entities linked to COVID-19 that have been highlighted in the scientific literature after the vaccine rollout. Eight different topic-specific dictionaries, i.e., gene, miRNA, lncRNA, PDB entries, disease, alternative medicines registered under clinical trials, drugs, and the side effects of drugs, were used to build this knowledgebase. We have introduced a BLSTM-based deep-learning model to predict the drug-disease associations that outperforms the existing model for the same purpose proposed in the earlier version of COVID-19Base. For the very first time, we have incorporated disease-gene, disease-miRNA, disease-lncRNA, and drug-PDB associations covering the largest number of biomedical entities related to COVID-19. We have provided examples of and insights into different biomedical entities covered in COVID-19Base to support the research community by incorporating all of these entities under a single platform to provide evidence-based support from the literature. COVID-19Base v3 can be accessed from: https://covidbase-v3.vercel.app/. The GitHub repository for the source code and data dictionaries is available to the community from: https://github.com/91Abdullah/covidbasev3.0.


Asunto(s)
COVID-19 , MicroARNs , ARN Largo no Codificante , Humanos , SARS-CoV-2 , Bases del Conocimiento
2.
Sci Rep ; 12(1): 18935, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344580

RESUMEN

Lung cancers with a mutated epidermal growth factor receptor (EGFR) are a major contributor to cancer fatalities globally. Targeted tyrosine kinase inhibitors (TKIs) have been developed against EGFR and show encouraging results for survival rate and quality of life. However, drug resistance may affect treatment plans and treatment efficacy may be lost after about a year. Predicting the response to EGFR-TKIs for EGFR-mutated lung cancer patients is a key research area. In this study, we propose a personalized drug response prediction model (PDRP), based on molecular dynamics simulations and machine learning, to predict the response of first generation FDA-approved small molecule EGFR-TKIs, Gefitinib/Erlotinib, in lung cancer patients. The patient's mutation status is taken into consideration in molecular dynamics (MD) simulation. Each patient's unique mutation status was modeled considering MD simulation to extract molecular-level geometric features. Moreover, additional clinical features were incorporated into machine learning model for drug response prediction. The complete feature set includes demographic and clinical information (DCI), geometrical properties of the drug-target binding site, and the binding free energy of the drug-target complex from the MD simulation. PDRP incorporates an XGBoost classifier, which achieves state-of-the-art performance with 97.5% accuracy, 93% recall, 96.5% precision, and 94% F1-score, for a 4-class drug response prediction task. We found that modeling the geometry of the binding pocket combined with binding free energy is a good predictor for drug response. However, we observed that clinical information had a little impact on the performance of the model. The proposed model could be tested on other types of cancers. We believe PDRP will support the planning of effective treatment regimes based on clinical-genomic information. The source code and related files are available on GitHub at:   https://github.com/rizwanqureshi123/PDRP/ .


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Calidad de Vida , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Aprendizaje Automático , Resistencia a Antineoplásicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...